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Abstract

We consider the estimation of credit rating transitions based on continuous-time

observations. Through simple examples and using a large data set from Standard and

Poor’s, we illustrate the difference between estimators based on discrete-time cohort

methods and estimators based on continuous observations. We apply semi-parametric

regression techniques to test for two types of non-Markov effects in rating transitions:

Duration dependence and dependence on previous rating. We find significant non-

Markov effects, especially for the downgrade movements. � 2002 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Transition matrices are at the center of modern credit risk management. The
reports on rating migrations published by Standard and Poor’s and Moody’s
are studied by credit risk managers everywhere and several of the most
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prominent risk management tools, such as J.P. Morgan’s Credit Metrics and
McKinsey’s Credit Portfolio View are built around estimates of rating mi-
gration probabilities.
In essence, the estimates published by these agencies and in the published

academic literature use a discrete-time setting and rely on a ‘cohort’ method
which estimates the transition rates as follows: Given that there are Ni firms in
a given rating category i at the beginning of the year and that out of this
population Nij have migrated to the category j, then the one year transition rate
is estimated as

p̂pij ¼
Nij

Ni
; j 6¼ i: ð1Þ

An important consequence of this is that if a transition from i to j does not
occur in a given period, the estimate of the corresponding rate is 0.
The rating agencies of course have access to continuous-time data on rating

transitions and know the exact dates within a year that a company changes its
rating or is downgraded. Similarly, a bank using an internal rating system will
have access to a complete history of rating transitions. We argue in the fol-
lowing, that it is crucial to base the estimation of transition rates on these
continuously observed histories to get efficient estimates of transition rates.
This point is particularly important when estimating ‘rare events’ such as the
transition from, say AAA in Standard and Poor’s rating, to default. Very
briefly stated, the maximum-likelihood estimator that one obtains for the one-
year transition probability from AAA to default will be (and should be) non-
zero even if there has been no direct or indirect defaults (i.e. default through a
sequence of downgrades) in the period of observation. Briefly stated, if in a one
year period there are no transitions from AAA to default, but there are
transitions from AAA to AA and from AA to default (but by other firms), then
the estimator for transitions from AAA to default should be non-zero, since
evidently there is a chance of defaulting within a year after successive down-
grades, even if it did not happen for one single firm in the sample. The con-
tinuous-time estimator captures this whereas the discrete-time method does
not.
Apart from getting a better grip on the rare events, the continuous time

methodology based on modern survival analytic techniques (see Skødeberg,
1998) and similar observations in the parallel work by Kavvathas (2000) has a
number of additional advantages:
1. The framework permits a rigorous formulation and testing of assump-

tions ‘rating drift’ and other non-Markov type behavior (such as seasoning
effects) investigated in for example Altman and Kao (1992a,b), Lucas and
Lonski (1992), and Carty and Fons (1993).
2. The dependence on external covariates can be formulated and tested, and

changes in ‘regimes’ either due to business cycles, as in for example Nickell
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et al. (2000), or changes in rating policies, as indicated by Blume et al. (1998)
can be quantified.
3. The continuous-time formulation hooks up nicely with rating-based term

structure modeling in which one tries to estimate and calibrate yield curves for
different rating classes, see for example Jarrow et al. (1997), Lando (1998) and
Das and Tufano (1996).
4. Censoring is handled easily within the continuous-time framework. Ac-

cording to Carty (1997) only few (roughly 13%) of the migrations to the not-
rated category are related to changes in credit quality and this observation is
used there and in Nickell et al. (2000) as an argument in support of excluding
the issuers who experience a transition to the not-rated category. Using the
survival theoretic setting of this paper, the conclusion is the opposite: The very
fact that transitions to not rated was caused by rating unrelated event justifies
the inclusion of these events as censored variables, thus permitting a full use of
the sample information. The time before a firm migrates to the not-rated
category contains valuable information on the changes that did not occur in
the time before this event. Note that the framework presented in Shumway
(2001) would also allow for censoring to be treated rigorously, but his
framework is still discrete-time.
5. When estimating homogeneous chains in continuous-time by estimating

the generator of the continuous-time Markov chain, we avoid the ‘embedding
problem’ for Markov chains (for more on this in a rating modeling context, see
Israel et al. (1999)). This problem arises because not every discrete time
Markov chain can be realized as a discretized continuous-time chain. Hence it
may be impossible from a one-year transition matrix (for example if it contains
zeros in some of the non-default rows) to construct a continuous-time chain
which has the one-year transition matrix as its ‘marginal’. However, the con-
tinuous-time chain is very useful in that it allows cash flows occurring at all
dates to be weighted by the exact survival probability corresponding to the
chosen time horizon.
One of the most important goals behind the current effort to revise the Basel

Capital Accord is to replace the existing risk weights with a system which more
clearly recognizes the differences in risk of various instruments. It is likely that
rating systems will play a larger role in quantifying these differences. The
statistical framework presented in this paper is a natural framework for
quantitatively assessing internal and external rating systems used by financial
institutions.
The outline of the paper is as follows:
In Section 2, we briefly describe the data used in our study. In Section 3, we

present the basic idea of continuous-time estimation in the framework of a
homogeneous Markov chain. A simple example illustrates the importance of
using continuous-time data. In Section 4 we describe how a time-inhomoge-
neous transition probability matrix may be estimated. Section 5 outlines the
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statistical framework and formulates a rigorous notion of rating drift. In
Section 6, the test results are presented, and Section 7 concludes. Appendix A
summarizes the technical material needed for the paper.

2. The data

The data covers 17 years of rating history in the S&P system starting on 1
January, 1981 and ending 31 December, 1997. There are a total of 6659 firms
which are rated at some point or another. The ratings are listed in the classi-
fication based on a total of 22 classifications. The top rating is AAA. Then
follows AA+ and from then each of the categories AA, A, BBB, BB, B, CCC
contain three ratings obtained by possibly adding ‘þ’ or ‘�’ to the letter grade.
Finally, there are some instances of CC and C ratings and a default category
denoted D. For some results, we have chosen to look at groupings into eight
categories which contain the seven letter categories (without plus or minus, and
CC and C grouped into CCC) and the default category. There are a total of
7282 transitions recorded within the system of eight categories including
transitions to NR. For the system consisting of 18 classes (in which all ratings
including the letter C are grouped into one CCC category) there are a total of
11 606 transitions, again counting the number of transitions to the NR cate-
gory. For each firm the exact transition dates between ratings (including de-
fault) are recorded and so are dates where the rating is discontinued. In these
cases the firm receives the not rated (NR) assignment. There are 114 cases of
transitions back from the NR category.
5405 out of the total population of 6659 firms are US companies. We do not

have the names of these firms but we do have access to the distribution of the
firms on industries. We are mainly looking at the aggregated data set to clearly
illustrate our methods and to get enough observed transitions between cate-
gories to make inference possible. We do, however, briefly consider the results
for the financial firms separately at the end.

3. The time-homogeneous case

Appendix A contains an overview of the necessary theory of Markov chain
modeling that we need for the entire paper. For this section we only need to
note the following facts: Throughout, we consider a K-state Markov chain
where we think of state 1 as the highest rating category and state K as the
default state. We collect the transition probabilities of the Markov chain for a
given time horizon in a K � K matrix P ðtÞ whose ij’th element is the probability
of migrating from state i to state j in a time period of t. Just like a discrete-time
Markov process on the rating classes can be obtained by matrix multiplication
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from the one-period transition matrix, there exists a simple representation of
the matrices P ðtÞ for arbitrary time horizons t for a continuous-time chain on
the same state space. The generator matrix K is a K � K matrix for which

P ðtÞ ¼ expðK tÞ; tP 0: ð2Þ

Here, K t is the matrix K multiplied by t on every entry and the exponential
function is a matrix exponential, as defined in Appendix A. The critical thing to
note, is that the transition probabilities for every time horizon is a function of
the generator. Hence, one can obtain maximum-likelihood estimators of the
transition probability matrices by first obtaining the maximum-likelihood es-
timate of the generator and then applying the matrix exponential function on
this estimate, scaled by the time horizon. The entries of the generator K satisfy

kij P 0 for i 6¼ j;

kii ¼ �
X
j 6¼i

kij:

These entries describe the probabilistic behavior of the holding time in state i as
exponentially distributed with parameter ki, where ki ¼ �kii, and the proba-
bility of jumping from state i to j given that a jump occurs is given by kij=ki. To
estimate the elements of the generator under an assumption of time-homoge-
neity we use the maximum likelihood estimator (see for example K€uuchler and
Sørensen, 1997)

k̂kij ¼
NijðT ÞR T
0
YiðsÞds

; ð3Þ

where YiðsÞ is the number of firms in rating class i at time s and NijðT Þ is the
total number of transitions over the period from i to j, where i 6¼ j. The in-
tuition is straightforward: the numerator counts the number of observed
transitions from i to j over the entire period of observation. The denominator
has the number of ‘firm-years’ spent in state i. Any period a firm spends in a
state will be picked up through the denominator. In this sense all information is
being used. We now illustrate the estimator both through a simple example and
on our data set. The simple example will give the intuition of the procedure.
The application on our data set will test the practical significance of using the
continuous-time technique.
To illustrate the estimator, consider a rating system consisting of two non-

default rating categories A and B and a default category D. Assume that we
observe over one year the history of 20 firms, of which 10 start in category A
and 10 in category B. Assume that over the year of observation, one A rated
firm changes its rating to category B after one month and stays there the rest of
the year. Assume that over the same period, one B rated firm is upgraded after
two months and remains in A for the rest of the period and a firm which started

D. Lando, T.M. Skødeberg / Journal of Banking & Finance 26 (2002) 423–444 427



in B defaults after six months and stays there for the remaining part of the
period. In this case we have for one of the entries

k̂kAB ¼
NABð1ÞR 1
0
YAðsÞds

¼ 1

9þ 1=12þ 10=12 ¼ 0:10084:

Proceeding similarly with the other entries (and noting that the state D is as-
sumed to be absorbing and the diagonal elements just make sure that rows sum
to zero) we obtain the estimated generator

K̂K ¼
�0:10084 0:10084 0
0:10909 �0:21818 0:10909
0 0 0

0@ 1A:

From this, we obtain the maximum likelihood estimator of the one-year
transition matrix as

dPð1ÞPð1Þ ¼
0:90887 0:08618 0:00495
0:09323 0:80858 0:09819
0 0 1

0@ 1A:

Had we instead used a cohort method the result would have been

dPð1ÞPð1Þ ¼
0:90 0:10 0
0:10 0:80 0:10
0 0 1

0@ 1A:

As we see, the traditional method does not capture default risk in the A cat-
egory simply because there is no firm defaulting directly from A. Note that the
continuous-time method produces a strictly positive estimator for default from
A over one year despite the fact that no firm in the sample defaults in one year
from A. This is appropriate because the probability of migrating to B and the
probability of default from B are clearly both positive. As a side remark, note
that in a classical cohort analysis the firm upgraded from B does not provide
more information than the upgrade. Here, it matters exactly when the upgrade
took place, and the six months spent in A with no further change contributes
information to the estimate of the transition intensity from rating class A.
We now consider how this difference materializes in our Standard and

Poor’s data set. We consider a 10 year sub-period from 1988 to 1998 to have a
reasonable large starting pool for the cohort method. If we use the cohort
method and estimate the one-year transition rates for each of the ten years and
then take an average of the estimated matrices we obtain the result presented in
Table 1. We have chosen to include transitions to and from the NR category.
As we will see later, we can easily modify the estimates to exclude that category
by using estimation under censoring. In Table 2 we report the estimated gen-
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erator using the estimator given in Eq. (3) and by taking the matrix exponential
of that estimator we obtain the estimated transition probabilities given in Table
3. As we can see from this table, the most important difference is the fact that
with four decimal points there is a measurable default probability even for the
highest rating categories. but note also the sizeable difference in the one-year
default probability of a CCC-rated firm when using the continuous-time esti-
mation method. One reason for this difference is the following: When using a
cohort method based on yearly samples, we will only record a migration from
CCC to default when a firm starts out in CCC in the beginning of the year in
which the default occurs. Many firms in the sample are downgraded to CCC
during the year and only stay there a short time before default. These will not
be recorded as defaults from CCC in the cohort method, but they will be re-
corded in the method based on the continuous sample. This explains the in-
crease in the CCC default frequency. It should also be noted, that in the
sample, almost all ratings observed to be in the C and CC category ended up in

Table 1

This shows the average of 10 one-year transition matrices, each estimated using a cohort method in

the period 1988–1998a

NR AAA AA A BBB BB B CCC D

NR 0.9939 0.0001 0.0000 0.0001 0.0006 0.0006 0.0004 0.0000 0.0044

AAA 0.0266 0.9040 0.0607 0.0070 0.0000 0.0016 0.0000 0.0000 0.0000

AA 0.0302 0.0054 0.8786 0.0791 0.0039 0.0006 0.0008 0.0000 0.0000

A 0.0401 0.0004 0.0157 0.8903 0.0445 0.0068 0.0017 0.0001 0.0003

BBB 0.0583 0.0001 0.0028 0.0519 0.8375 0.0388 0.0068 0.0018 0.0018

BB 0.0906 0.0000 0.0003 0.0051 0.0795 0.7452 0.0587 0.0110 0.0095

B 0.1268 0.0000 0.0008 0.0015 0.0050 0.0730 0.7081 0.0326 0.0500

CCC 0.1658 0.0020 0.0000 0.0061 0.0089 0.0279 0.1003 0.4842 0.2048

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

aWe show also transitions to and from the NR category.

Table 2

The maximum-likelihood estimator of the generator based upon continuous-time observation over

the 10-year period 1988–1998

NR AAA AA A BBB BB B CCC D

NR �0.0066 0.0000 0.0001 0.0003 0.0006 0.0010 0.0003 0.0000 0.0043

AAA 0.0248 �0.1062 0.0720 0.0071 0.0000 0.0024 0.0000 0.0000 0.0000

AA 0.0322 0.0068 �0.1301 0.0858 0.0044 0.0004 0.0004 0.0000 0.0000

A 0.0431 0.0004 0.0144 �0.1136 0.0499 0.0045 0.0011 0.0002 0.0000

BBB 0.0551 0.0003 0.0023 0.0548 �0.1691 0.0496 0.0061 0.0006 0.0003

BB 0.1017 0.0000 0.0012 0.0078 0.1101 �0.3213 0.0866 0.0108 0.0030

B 0.1713 0.0000 0.0027 0.0020 0.0061 0.0904 �0.4052 0.1038 0.0290

CCC 0.2099 0.0042 0.0000 0.0084 0.0000 0.0336 0.1301 �0.9697 0.5835

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

D. Lando, T.M. Skødeberg / Journal of Banking & Finance 26 (2002) 423–444 429



default or with a rating withdrawal. The fact that these are grouped into the
CCC category may exaggerate the default frequency of this category.
The results above are mainly for illustration purposes. As we will see below

there are many reasons to believe that the data are not from a homogeneous
Markov chain and we need to modify our estimation methods to take into
account both non-homogeneities and the influence from exogenous variables
on the rating migration probabilities.

4. Estimating non-homogeneous chains

We have just seen how to use the maximum-likelihood estimator to estimate
the generator and transition matrices using continuous data. Even if the method
assumes time homogeneity, something which is hard to assume over the long
run, it is a useful tool for estimating a one-year transition matrix. However, as we
will see in this section another non-parametric method exists. This method is a
useful tool for replacing the cohort methods over longer periods of time. Con-
sider a non-homogeneous, continuous-time Markov process g with finite state
space S ¼ f1; 2; . . . ;Kg whose transition probability matrix for the period from
time s to time t is given by P ðs; tÞ:Hence, the ij’th element of this matrix describes
the probability that the chain starting in state i at date s is in state j at date t.
In this section we will explain the so-called product-limit estimator, or

Aalen–Johansen estimator, for the transition probabilities P ðs; tÞ and the re-
lation to our example. Appendix A elaborates and provides further references.
Given that our sample has m transitions over the period from s to t, we can
estimate P ðs; tÞ consistently as

P̂P ðs; tÞ ¼
Ym
i¼1

ðI þ D ÂAðTiÞÞ: ð4Þ

Table 3

The one-year transition matrix estimated from continuous-time data over the period 1988–1998 as

the matrix exponential of the maximum likelihood estimator of the generator

NR AAA AA A BBB BB B CCC D

NR 0.9935 0.0000 0.0001 0.0003 0.0006 0.0009 0.0003 0.0000 0.0043

AAA 0.0248 0.8995 0.0640 0.0091 0.0005 0.0020 0.0001 0.0000 0.0001

AA 0.0321 0.0061 0.8788 0.0761 0.0057 0.0006 0.0004 0.0000 0.0001

A 0.0424 0.0004 0.0129 0.8944 0.0436 0.0047 0.0011 0.0002 0.0002

BBB 0.0545 0.0003 0.0023 0.0479 0.8479 0.0393 0.0063 0.0008 0.0008

BB 0.0965 0.0000 0.0012 0.0090 0.0869 0.7303 0.0612 0.0084 0.0065

B 0.1518 0.0001 0.0022 0.0024 0.0084 0.0643 0.6734 0.0534 0.0440

CCC 0.1429 0.0025 0.0003 0.0053 0.0017 0.0215 0.0674 0.3824 0.3760

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
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Here, Ti is a jump time in the interval ½s; t� and

D ÂAðTiÞ ¼

� DN1ðTiÞ
Y1ðTiÞ

DN12ðTiÞ
Y1ðTiÞ

DN13ðTiÞ
Y1ðTiÞ

� � � DN1pðTiÞ
Y1ðTiÞ

DN21ðTiÞ
Y2ðTiÞ

� DN2ðTiÞ
Y2ðTiÞ

DN23ðTiÞ
Y2ðTiÞ

� � � DN2pðTiÞ
Y2ðTiÞ

..

. ..
. . .

.
� � � ..

.

DNp�1;1ðTiÞ
Yp�1ðTiÞ

DNp�1;2ðTiÞ
Yp�1ðTiÞ � � � � DNp�1;ðTiÞ

Yp�1ðTiÞ
DNp�1;pðTiÞ
Yp�1ðTiÞ

0 0 � � � � � � 0

0BBBBBBBBB@

1CCCCCCCCCA
:

Here, DNhjðTiÞ denotes the number of transitions observed from state h to j at
date Ti.

1

DNkðTiÞ counts the total number of transitions away from state k at date Ti
and YkðTiÞ is the number of firms in state k right before date Ti and hence the
diagonal element in row k counts, at a given date Ti, the fraction of the exposed
firms YkðTiÞ which leaves the state at date Ti. The off-diagonal elements count
the specific types of transitions away from the state divided by the number of
exposed firms. Note that the variable Y automatically incorporates censoring
in that nothing happens to the estimator on the day of a censoring event (if that
is the only event). The number of exposed firms changes, however, and this will
affect the estimate on the next date of an observed transition. Note that the
bottom row is zero in DA because we do not model firms leaving the default
state. Note also, that the rows of the matrix I þ DAðTiÞ automatically sum to 1.
In summary, one may view this estimator as a cohort method applied to ex-
tremely short time intervals.
Let us briefly consider the method on the example of the previous section to

see how the estimator produces yet another candidate for estimating a one-year
transition probability matrix. To compute the one-year transition probability
matrix non-parametrically, we first compute

DAðT1=12Þ ¼
�0:1 0:1 0

0 0 0

0 0 0

0@ 1A;

1 This notation is used because NhjðtÞ counts the total number of transitions observed from h to j
from the starting date until time t, and DNhjðTiÞ then is an increment of this process. Note that if
observations were truly in continuous time, we would have no simultaneous jumps and for every

time point t at most one off-diagonal element of D ÂAðtÞ would be non-zero. In practice there are ‘ties’
so that several off-diagonal elements can be non-zero at the same time point and the increment of a

particular jump-type DNhjðTiÞ may even be larger than one. Given the relative richness of time
points (days) and the many types of transitions possible from each class, ties and conventions for

handling them do not seem to play an important role in our data set.
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DAðT2=12Þ ¼
0 0 0
1
11

� 1
11
0

0 0 0

0@ 1A;

DAðT1=2Þ ¼
0 0 0
0 �0:1 0:1
0 0 0

0@ 1A:

Therefore we get the Aalen–Johansen estimator

dPð0; 1ÞPð0; 1Þ ¼
0:90909 0:08181 0:00909
0:09091 0:81818 0:09091
0 0 1

0@ 1A:

As we can see, there is a difference between the estimator based on the gen-
erator and this estimator on the default probability. Hence it makes a difference
whether we estimate the one-year transition probability based on continuous
observations using the exponential of the generator or the non-parametric
Aalen–Johansen estimator. One can view the matrix exponential as a smoothed
version, and it is clearly this form which is most suited to risk management in
that it allows computation of estimated default and transition intensities over
arbitrarily short time intervals. The two methods are not dramatically different
for large data sets, as illustrated in Tables 4 and 5. As we see, the difference is
much less significant than the one between the cohort method and the methods
based on continuous samples.
By comparing this Aalen–Johansen estimator over longer time horizons to

estimators based on a time-homogeneity assumption, time inhomogeneities will
become apparent. This non-parametric estimator does not give a way of de-
tecting the sources of these inhomogeneities. To formulate statistical hypoth-

Table 4

One-year transition probability matrix estimated for the year 1997a

AAA AA A BBB BB B CCC D

AAA 0.95912 0.03982 0.00096 0.00010 0.00000 0.00000 0.00000 0.00000

AA 0.01249 0.93689 0.04519 0.00524 0.00015 0.00004 0.00000 0.00000

A 0.00011 0.01666 0.93097 0.04906 0.00274 0.00042 0.00001 0.00003

BBB 0.00002 0.00253 0.03635 0.90603 0.03955 0.01398 0.00030 0.00125

BB 0.00000 0.00012 0.00318 0.07866 0.85980 0.05411 0.00317 0.00096

B 0.00000 0.00005 0.00495 0.00385 0.07029 0.87618 0.02941 0.01527

CCC 0.00000 0.00004 0.00091 0.02523 0.02890 0.11823 0.52289 0.30380

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

a The estimator is the maximum likelihood estimator based on continuous observations and

derived from the maximum likelihood estimator of the intensity matrix assuming time-homoge-

neity. The estimator is only marginally different from the Aalen–Johansen estimator for the same

period.
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esis on this, we have to work with the transition intensities, and this is the topic
of Section 5.

5. Introducing covariates: The statistical framework

We now set up the appropriate framework for testing whether the transition
intensities of a Markov model depend on certain covariates. Our application is
to test for non-Markovian behavior, i.e. so-called rating drift (i.e. dependence
on previous rating) and waiting-time effects but the framework could also
easily handle dependencies on macroeconomic variables (see Kavvathas (2000)
for examples of this).
In Appendix A, we have recalled how a matrix of transition intensities

characterize the evolution of a non-homogeneous Markov chain. The key as-
sumption in the following is that the transition intensity for each type of rating
migration is influenced by an external, time varying covariate. Let Yhi denote an
indicator process, which is 1 when the process is in state h and 0 otherwise. We
assume that the intensity of transition from state h to state j for firm i is given
as

khjiðtÞ ¼ YhiðtÞahjiðt; ZiðtÞÞ;

where ahjiðt; ZiðtÞÞ has the multiplicative form
ahjiðt; ZiðtÞÞ ¼ ahj0ðtÞ expðbhjZiðtÞÞ: ð5Þ

This statistical formulation is a semi-parametric multiplicative hazard model,
which is a proportional intensities regression model. The theory behind this
modeling is described in Andersen et al. (1991) and Section VII of Andersen
et al. (1993). We have summarized in Appendix A.
Note that the time-varying ‘baseline’ intensity ahj0 is unspecified (but non-

negative) and the parameter of interest is the regression coefficient bhj. The

Table 5

Aalen–Johansen estimator for the year 1997a

AAA AA A BBB BB B CCC D

AAA 0.95866 0.03926 0.00184 0.00023 0.00001 0.00000 0.00000 0.00000

AA 0.01273 0.93714 0.04440 0.00544 0.00022 0.00007 0.00000 0.00000

A 0.00010 0.01682 0.93088 0.04880 0.00278 0.00061 0.00000 0.00001

BBB 0.00002 0.00252 0.03632 0.90736 0.03888 0.01353 0.00009 0.00128

BB 0.00000 0.00016 0.00347 0.07905 0.86016 0.05342 0.00294 0.00079

B 0.00000 0.00005 0.00507 0.00378 0.07066 0.87599 0.02797 0.01647

CCC 0.00000 0.00000 0.00045 0.02302 0.03104 0.12522 0.51784 0.30242

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 1.00000

a This estimator is a non-parametric estimator of the one-year transition probability matrix. It is

only marginally different from the parametric maximum likelihood estimator obtained in Table 4.
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covariate Zi is designed to keep track of an influence on i’s transition intensity.
Non-zero values of the product of covariates and the parameter cause the
intensities to deviate from the baseline hazard. Thus, if the process of rating
changes exhibits non-Markov behavior the regression coefficients are signifi-
cantly different from zero, and this is exactly what we investigate via statistical
tests on b in the coming subsections. The theory behind the estimation of b is
done by maximizing a so-called partial likelihood. The theory along with
further references is outlined in Appendix A.
We have chosen to work with this model in this paper, since we are con-

cerned with testing non-Markov effects of transitions, i.e. the covariates will be
variables describing whether the previous move was an upgrade or a down-
grade or the duration in the present state for each firm i. It is, of course, likely
(see for example Bangia et al., 2000; Nickell et al., 2000; Kavvathas, 2000) that
macroeconomic variables or other indicators of the business cycle influence
rating intensities. Indeed, if a rating system attempts to keep the marginal
default probabilities relatively constant for a given rating category, then one
should see downgrades taking place more often in a recession. But since we do
not want in this paper to explain the macroeconomic influences and do not
want a fully parametric model to be misspecified due to business cycle vari-
ables, we absorb such fluctuations through the baseline intensity. Hence this
test is specifically designed to allow us to focus precisely on the kind of devi-
ation from a Markov hypothesis that we are interested in.
The first such deviation which we test for, is whether the last rating change

influences the transition probabilities out of the present class. 2 The basic co-
variates are defined as

ZiðtÞ ¼
1; individual i was upgraded to the present rating class;
0; otherwise:

�
The statistical test for the hypothesis of no rating drift is seen to be the simple
hypothesis

H : b ¼ 0: ð6Þ

This hypothesis is equivalent to no serial correlation in any rating class of
previous up- and downgrades. As recalled in the appendix, likelihood theory
provides a (partial) likelihood ratio test for the hypothesis H.
Several studies 3 address the issue of ‘rating drift’ which is essentially a ‘non-

Markov’ property in that the history of the rating process – not just the current
rating – carries information about the transition probabilities. But one needs to

2 For this test, we only include data for firms that experience more than one change of rating.

Similarly, for duration dependence, we need at least one rating change.
3 See e.g. Altman and Kao (1992a,b), Carty and Fons (1993, 1994).
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be careful in defining what rating drift really means. To give an example of this,
consider the notion of rating momentum as used for example in Carty and
Fons (1993). That study found the following: for each rating category, the
probability of a downgrade following a downgrade within a year significantly
exceeds that of an upgrade following a downgrade. This way of tackling serial
correlation effects is inappropriate since it does not recognize the dynamics of
the Markov chain which may very well for several rating categories have a
lower upgrade probability than downgrade probability. One should differen-
tiate the direction in which one came into the current state, not the direction in
which one leaves the current state. Indeed, one would expect for high rating
categories to see a small probability of an upgrade compared to a downgrade
and in a low grade like BB the picture could be reversed. In a continuous-time
Markov model the binomial test hypothesis corresponds to asking whetherP

j<h ahjðtÞ ¼
P

j>h ahjðtÞ for all states except for the best and the default rating
class, where ahjðtÞ is the transition intensity at time t between state h and j: This
is not a reasonable hypothesis. If in addition (as in some studies) data are
aggregated across rating categories such that only total number of up- and
down-gradings are considered, then again the ‘drift’ could be a consequence of
the composition of the firms in the sample: A high number of firms in low
categories would show different results than a sample with a high number of
firms in the high categories. Instead, a rigorous test of rating drift must check
whether firms in a specific rating class exhibit the same rating behavior re-
gardless of whether they obtained their current rating through an upgrade of a
downgrade. Our specification takes care of this problem. But note that ex-
tensions could readily be made: one might be interested in differentiating which
type of upgrade preceded the current rating, and not just note that it was an
upgrade. While this of course gives a more precise statistical hypothesis, it also
rapidly decreases the data underlying the test, and it becomes very hard to
obtain statistical power.
Second, we study duration dependencies in this model. This requires the

following definition of the basic duration covariates Zi:

ZiðtÞ ¼ \time since last entry into the present state":

Since previous empirical evidence has suggested a lower intensity as a function
of time spent in a state, we have chosen the exponential form which not only
keeps the intensity positive but also lets the effect ‘die out’ as the duration
increases when the regression parameter is negative.

6. Test results

First, we consider the question of ‘momentum’ or ‘rating drift’ and ask if the
intensity of being upgraded from a state depends on whether the current state
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was reached through a downgrade or an upgrade. We ask the same question
for downgrades: Is there a tendency of a downgrade to be more likely if the
current state was reached through a downgrade. To get enough observed
transitions to make meaningful inference, we consider only transitions from the
current state to a neighboring state. We consider all possible ways of reaching
the current state but group together all the downgrades into the current state
by assigning the same value of the covariate for these firms. All the upgrades
into the current state are then in the other group. The results are shown in
Tables 6 and 7. In all cases, except for current ratings BB, CCC+ and CCC, we
find a strong, downgrade momentum which in several cases increases the
downgrade intensity by a factor of 3. For upgrades, the result is almost the
opposite. There is virtually no detectable effect on the upgrade intensity of a
previous upgrade except from ratings BBB+, BBB, BB+ and B+.
Next, we ask if the duration in a given rating influences the downgrade or

upgrade intensity. Again, to make sure the data material is not too thin, we

Table 6

Results shown are for the test of an effect of a previous downgrade on the intensity of a downgrade

to a neighboring state

Ratings

From To bbb stdðbbbÞ n1 n2 p

AA+ AA 0.897 0.281 149 65 <0.01

AA AA) 0.936 0.211 314 100 <0.01
AA) A+ 0.871 0.172 490 162 <0.01

A+ A 0.582 0.147 663 198 <0.01

A A) 0.868 0.160 842 193 <0.01
A) BBB+ 1.180 0.196 780 161 <0.01

BBB+ BBB 0.714 0.168 721 180 <0.01

BBB BBB) 1.180 0.222 712 140 <0.01

BBB) BB+ 1.090 0.241 641 95 <0.01
BB+ BB 0.970 0.303 513 59 <0.01

BB BB) 0.144 0.227 571 82 0.53

BB) B+ 0.858 0.253 522 74 <0.01

B+ B 1.010 0.282 575 87 <0.01
B B) 0.541 0.457 437 43 <0.01

B) CCC+ 2.030 1.040 271 28 <0.01

CCC+ CCC 6.170 23.5 194 15 0.20

CCC CCC) �0.929 0.873 150 18 0.32

The first column shows the precise type of transition studied. The second column reports the

estimate of b: A positive (negative) b implies that the downgrade intensity is increased (decreased)
by a factor of expðbÞ compared to the case of a previous upgrade. The standard deviation of the
estimate is provided. n1 is the total number of times we have observed a firm exposed to the given
type of transition, i.e. the total number of censored or uncensored observations in the ‘From’ rating

category. n2 reports the number of actual transitions observed. p is the test statistic reported as a
probability. So a test statistic of <0.01 is significant at least at the level of one percent. We see

highly significant effects in virtually all categories.
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consider only transitions to neighboring states. In Table 8 it is shown that in
almost every case of downgrades we reject the hypothesis that the duration has
no influence. In fact, we see that bbb is negative, meaning that expðbbbÞ < 1. Thus,
the intensity ajiðtÞ ¼ aj0ðtÞ expðbZðtÞjiÞ is negatively affected by a change in the
duration. i.e. the longer the firm has been in the rating class—the smaller the
probability to downgrade is. In Table 9 we again find that the longer the firm
has been in the rating class – the smaller is the probability to upgrade. Com-
bining the two duration analyses we may conclude, that a firm with a given
rating has a lower probability of changing its rating the more time it spends in
its current state. A possible explanation of these effects could be the reluctance
of rating agencies to change a rating by more than one notch at a time. If this is
the case, then firms on the way (say) down through the rating system, will
spend relatively short time in the intermediate states. Hence those that stay
there a short amount of time are often firms on the way down.
The results are striking. One should however note, that they build upon an

aggregate treatment of the firms in which we do not separate the industries to

Table 7

Results shown are for the test of an effect of a previous upgrade on the intensity of an upgrade to a

neighboring state

Ratings

From To bbb stdðbbbÞ n1 n2 p

AA+ AAA �0.106 0.525 149 15 0.84

AA AA+ �0.011 0.545 314 14 0.98

AA) AA �0.132 0.268 490 56 0.62

A+ AA) 0.337 0.233 663 85 0.14

A A+ 0.449 0.190 842 116 0.02

A) A 0.261 0.151 780 177 0.08

BBB+ A) 0.720 0.168 721 153 <0.01

BBB BBB+ 0.508 0.173 712 137 <0.01
BBB) BBB 0.143 0.173 641 144 0.405

BB+ BBB) 0.535 0.174 513 152 <0.01

BB BB+ �0.100 0.187 571 122 0.60

BB) BB 0.1947 0.190 522 114 0.315

B+ BB) 0.667 0.214 575 90 <0.01

B B+ 0.560 0.277 437 63 0.05

B) B 0.490 0.477 271 22 0.31

CCC+ B) �6.150 25.7 194 17 0.24

CCC CCC+ �7.280 45.1 150 6 0.25

The first column shows the precise type of transition studied. The second column reports the

estimate of b. A positive (negative) b implies that the upgrade intensity is increased (decreased) by a
factor of expðbÞ compared to the case of a previous downgrade. The standard deviation of the
estimate is provided. n1 is the total number of times we have observed a firm exposed to the given
type of transition, i.e. the total number of censored and uncensored observations in the ‘From’

category. n2 reports the number of actual transitions observed. p is the test statistic reported as a
probability. A test statistic of <0.01 is significant at least at the level of 1%.
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which the firms belong. Industry effects are shown to be significant in Nickell
et al. (2000) and Kavvathas (2000). An analysis run separately on our data for
the largest subsample of financial institutions does produce some deviations.
For example, the downgrade momentum is no longer present for the categories
from BB)up to BBB). An explanation for this could be that financial insti-
tutions are typically unable to compete when the rating goes into the specu-
lative categories. It will then often be overtaken or merge to get consolidation
and more competitive funding rates. Hence a downgrade is not likely to be
followed by another downgrade in these categories. But since we do not have
the identities of the firms, we are unable to check that. Also, our subsamples
would be relatively small in the various other industry groups and it would be
hard to get enough statistical power to test the hypotheses we are interested in
for each type of transition.

Table 8

Results shown are for the test of an effect of the waiting time in the initial category listed under

‘From’ on the intensity of a downgrade to a neighboring state

Ratings

From To bbb stdðbbbÞ n1 n2 p

AAA AA+ �0.348 0.114 61 13 <0.01
AA+ AA �0:405 0.067 149 65 <0.01

AA AA) �0:282 0.037 314 100 <0.01

AA) A+ �0:380 0.041 490 162 <0.01

A+ A �0:351 0.035 663 198 <0.01
A A) �0:547 0.046 842 193 <0.01

A) BBB+ �0:628 0.064 780 161 <0.01

BBB+ BBB �0:360 0.047 721 180 <0.01
BBB BBB) �0:555 0.056 712 140 <0.01

BBB) BB+ �0:679 0.095 641 95 <0.01

BB+ BB �0:708 0.134 513 59 <0.01

BB BB) �0:453 0.099 571 82 <0.01
BB) B+ �0:621 0.110 522 74 <0.01

B+ B �0:529 0.085 575 87 <0.01

B B) �0:683 0.155 437 43 <0.01

B) CCC+ �0:902 0.216 271 28 <0.01
CCC+ CCC �2:241 0.690 194 15 <0.01

CCC CCC) �0:704 0.259 150 18 <0.01

The first column shows the precise type of transition studied. The second column reports the

estimate of b: A negative (positive) b implies that the downgrade intensity is decreased (increased)
after a duration of t by a factor of expðbtÞ compared to a case where the duration has no effect. The
standard deviation of the estimate is provided. n1 is the total number of times we have observed a
firm exposed to the given type of transition, i.e. the total number of censored or uncensored

observations in the ‘From’ rating category. n2 reports the number of actual transitions observed. p
is the test statistic reported as a probability. A test statistic of <0.01 is significant at least at the level
of one percent. We see highly significant effects in virtually all categories.
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7. Conclusion

There are two main conclusions from this paper: First, we show the im-
portance of estimating transition data based on the full story of rating tran-
sitions. Using either the maximum likelihood estimator in the homogeneous
case or the non-parametric Aalen–Johansen estimator in the non-homoge-
neous case, the default probabilities over (say) one year are non-zero even for
the highest rating category. This will affect risk measures both of the VaR type
(for small quantiles) and measures of risk taking into account expected loss
given that a certain threshold has been passed.
Second, we have presented a rigorous formulation of the notion of ‘rating

drift’ – a type of non-Markovian behavior – in the process of ratings. The
conclusion from analyzing the data set provided by Standard and Poor’s, is
that there seem to be strong non-Markov effects for downgrades in the
aggregate data set, i.e. working on the entire population of firms without

Table 9

Results shown are for the test of an effect of the waiting time in the initial category listed under

‘From’ on the intensity of an upgrade to a neighboring state

Ratings

From To bbb stdðbbbÞ n1 n2 p

AA+ AAA �0:416 0.132 149 15 <0.01
AA AA+ �0:226 0.096 314 14 <0.01

AA) AA �0:360 0.072 490 56 <0.01

A+ AA) �0:331 0.057 663 85 <0.01

A A+ �0:329 0.049 842 116 <0.01
A) A �0:376 0.045 780 177 <0.01

BBB+ A) �0:449 0.057 721 153 <0.01

BBB BBB+ �0:266 0.043 712 137 <0.01
BBB) BBB �0:346 0.051 641 144 <0.01

BB+ BBB) �0:532 0.075 513 152 <0.01

BB BB+ �0:540 0.085 571 122 <0.01

BB) BB �0:537 0.084 522 114 <0.01
B+ BB) �0:383 0.071 575 90 <0.01

B B+ �0:359 0.100 437 63 <0.01

B) B �0:430 0.189 271 22 0.012

CCC+ B) �0:507 0.247 194 17 0.016

CCC CCC+ �0:934 0.631 150 6 0.032

The first column shows the precise type of transition studied. The second column reports the

estimate of b. A negative (positive) b implies that the upgrade intensity is decreased (increased)
after a duration of t by a factor of expðbtÞ compared to a case where the duration has no effect. The
standard deviation of the estimate is provided. n1 is the total number of times we have observed a
firm exposed to the given type of transition, i.e. the total number of censored or uncensored

observations in the ‘From’ rating category. n2 reports the number of actual transitions observed. p
is the test statistic reported as a probability. A test statistic of <0.01 is significant at least at the level

of 1%. We see highly significant effects in virtually all categories.
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differentiating for example between industries. Both the duration in a given
state and the direction from which the state what reached has significant effects
on the downgrade intensity. These effects would be consistent with a policy of
taking a downgrade through a series of mild downgrades. However, the effect
becomes less pronounced (but still significant in several categories) when
looking for example at financial firms only. For upgrades, a significant effect of
the previous move is only present in a few states, whereas the duration again
seems to be a significant factor.
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Appendix A. Markov chains, estimation and testing

A.1. Non-homogeneous Markov chains and transition intensities

This appendix provides a brief outline of the elements we need from the
theory of finite state space, non-homogeneous Markov chains. The finite state
space we consider consists of the rating categories including a default state and
in some cases the not rated category as well.
The evolution of a continuous-time non-homogeneous Markov chain g

is described through transition matrices of the form P ðs; tÞ where the ij’th el-
ement contains the transition probability between states i and j from time s to
t, i.e.

pijðs; tÞ ¼ Probðgt ¼ jjgs ¼ iÞ; s < t:

Recall that the Markov property says that

Probðgt ¼ jjgs0 ¼ i0; gs1 ¼ i1; . . . ; gsn�1 ¼ in�1; gs ¼ iÞ ¼ Probðgt ¼ jjgs ¼ iÞ
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whenever s0, s1;1; . . . ; sn�1 < s. This imposes the familiar restriction on the
transition matrices:

P ðs; uÞ ¼ P ðs; tÞPðt; uÞ for s < t < u:

To understand the time-inhomogeneity, note that for a time-homogeneous
Markov chain the transition probability matrix is a function of the distance
between dates and not the dates themselves, i.e. in the homogeneous case, there
would exist a family of transition matrices indexed by one parameter
ðPðtÞÞðtP 0Þ and we could then write

P ðu� sÞ ¼ P ðt � sÞP ðu� tÞ for s < t < u

keeping track only of the distance between the time points and not their lo-
cation in calendar time. For the processes we consider, it is always assumed
that there exist transition intensities for each type of transition, i.e. that for each
t and each pair of states i, j the limit

kijðtÞ :¼ lim
h!0þ

pijðt; t þ hÞ=h

exists. It is typically more natural to formulate statistical hypotheses in terms of
transition intensities instead of through the probabilities. When these limits
exist for all transitions, then we also have for each row a sum of all the in-
tensities

kiðtÞ :¼
X
j 6¼i

kijðtÞ

which, if multiplied by (a small) Dt, approximates the probability of leaving the
state i within Dt. This function also gives us the duration distribution in state i
in that

P ðgu ¼ i for all u 2 ðs; t�jgs ¼ iÞ ¼ exp
�
�
Z t

s
kiðuÞdu

�
:

Note that this probability is not the same as piiðs; tÞ which gives the proba-
bility of being in i both at times s and t, but does not restrict the chain to
staying in i in the period between s and t. It is only in the case of a homoge-
neous Markov chain that one gets a simple formula from all the transition
probabilities from the intensities. If the intensities are constant (time-inde-
pendent) then we have

P ðtÞ :¼ P ð0; tÞ ¼ expðKtÞ :¼
X1
k¼0

Kktk

k!
;

where we have given the definition of the matrix exponential as an infinite sum.
This is Eq. (2) and this equation gives us the maximum likelihood estimator
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used in Section 3 for the transition probabilities as a function of the estimated
intensities. In the non-homogeneous case, the link between intensities and
transition probabilities can be described as follows, cf. Gill and Johansen
(1990): define the cumulative intensity function for a transition from state i to j,
as

AijðtÞ ¼
Z t

0

kijðsÞds;

AiiðtÞ ¼ �
X
j 6¼i

AijðtÞ:

The transition matrix for a non-homogeneous chain is given from these cu-
mulative intensities as a limit:

P ðs; tÞ ¼ P½s;t�ðI þ dAÞ � lim
max jti�ti�1j!0

PiðI þ AðtiÞ � Aðti�1ÞÞ;

where s6 t16 tn 6 t, and where the ij’th element of the matrix AðtÞ is just AijðtÞ.
The Aalen–Johansen estimator directly uses this link by estimating the incre-
ments of the individual intensity functions. These increments are computed
from observed transitions divided by the number of exposed firms. All the
cumulative intensities together produce the estimator for the transition prob-
abilities.
When we test hypotheses on the influence of factors, such as previous state,

on transitions we analyze each transition intensity separately. The outline of
how this is done is provided in the next section.

A.2. Statistical theory

The data records transitions between states, and we let Nhji denote the
number of observed transitions from state h to state j by firm i. We assume in
the basic model that the intensity of transition from state h to j is given as

NhjiðtÞ ¼
Z t

0

ahjiðuÞYhiðuÞduþMhjiðtÞ;

where

YhiðtÞ ¼
1 if firm i is in state h at time t;
0 otherwise;

�
and Mhji is a martingale. The term

R t
0
ahjiðuÞYhiðuÞdu is the cumulative intensity

for the transitions of firm i between state h and state j. Such a transition can
occur several times if a firm i reenters the state h several times. The censoring
variable Yhi sets the intensity of jumping away from state h for firm i equal to
zero when the firm leaves the state either due to a migration to another rating
or to a NR category. When the firm leaves for state j this can be viewed as a
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censored observation of the transition from i to any state different from j and
the transition to NR is viewed as independent censoring as well.
The semi-parametric specification, explained in the paper,

ahjiðtÞ ¼ ahj0ðtÞ expðbhjZiðtÞÞ

is used to estimate and test for influence of the covariate process Zi on the
transition intensity from state h to j: The base-line intensity ahj0ðtÞ is left un-
specified, and therefore a full likelihood function cannot be used. Instead, the
regression parameter bhj is found by maximizing the so-called partial likelihood

LðbhjÞ ¼
Y
t

Y
i

expðbhjZiðtÞÞ
S0hjðbhj; tÞ

;

where

S0hjðbhj; tÞ ¼
Xn
i¼1

YhiðtÞ expðbhjZiðtÞÞ:

Note that the maximization is done for each type of transition separately: we
use here the fact that the partial likelihood of all the observed rating transitions
used for estimating the regression parameters of all transition types actually
factors into a product of partial likelihood functions – one for each transition
type – which therefore can be maximized separately. The maximization is done
by setting the (partial) score function of LðbÞ equal to zero, and this score
function can be shown to equal

o log LðbhjÞ
obhj

¼ o

obhj

Z T

0

X
h;j;i

dNhjiðtÞ b0
hjZiðtÞ

h
� logðSð0Þ

hj ðbhj; tÞÞ
i
:

The asymptotic results is based on the martingale property of this expression
(viewed, of course, as a process in t) and it can be shown (see for example
Andersen et al., 1993) that the estimator is asymptotically normal. Further-
more, the (partial) likelihood ratio test for testing cbhjbhj ¼ bhj given as

LR ¼ �2 log
LðbhjÞ
LðcbhjbhjÞ

 !
¼ 2ðlog LðcbhjbhjÞ � log LðbhjÞÞ

has an asymptotic chi-square distribution with one degree of freedom. All our
tests are based on this result. Once the estimate of b is obtained, one may go
back and obtain a Nelson–Aalen type estimator of the baseline intensity, but
we will not be concerned with that in this paper. For more on this, see An-
dersen et al. (1993).
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